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ABSTRACT: We studied the most general spherically symmetric space-time, in time – independent
gravitational fields in related to the pre - Hawking radiation, gravitational collapse and stability of the model.
It is seen that in stationary space-time, there is no pre - Hawking radiation, and model will continue to
collapse due to the gravitational effect. The model is unstable and has no stability phase in stationary space-
time.
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I. INTRODUCTION

General relativity has developed into an essential tool in
modern Astrophysics. It is the simplest theory that is
consistent with the experimental data. It is the basis of
current cosmological models of a consistently
expanding universe and it provides the foundation for
the current understanding of gravitational collapse and
black holes.
A massive star can collapse under the force of its own
gravity. The final fate of such a continuous
gravitational collapse will be either a black hole or a
naked singularity under different conditions in general
theory of relativity. Stephan Hawking [1] has
theoretically predicted that black holes are weak
emitters of thermal radiation generated close to the
event horizon. The event horizon is the boundary where
light is forever trapped by the black hole’s gravitational
pull. The thermal radiation emitted from the black holes
is called Hawking radiation. It arises due to the
quantum effects near the event horizon. The horizon
separates the virtual particle pair (constantly being
created from the quantum vacuum) such that one of
them is sucked inside the black hole and the other one
escapes, causing the black hole to lose energy. Hawking
radiation reduces the mass and the energy of the black
hole and is therefore also known as Black Hole
Evaporation. The event horizon is supposed to mark a
boundary beyond which nothing can escape a black
hole’s gravity. According to general relativity, even
light is trapped inside the horizon and no information
about what fell into the hole can ever escape. Thus, the
Hawking radiation from a black hole does not carry
back any information about the hole.

So, in this sense, the information seems to have been
destroyed. However, this contradicts quantum
mechanics which holds that information inside systems
can’t be destroyed. The equations of quantum
mechanics always preserve information. This creates
the “information paradox” of black holes. But recently
some researchers argue the information may never have
cut off in the first place. Vachaspati et. al. [2] have
tried to calculate what happens as a black hole is
forming. They find that the gravity of the collapsing
mass starts to disrupt the quantum vacuum, generating
what they call pre - Hawking radiation. Losing that
radiation reduces the total mass – energy of the object –
so that it never gets dense enough to form an event
horizon and a true black hole. Their study says that the
true event horizon never forms in a gravitational
collapse. Rather than forming a full – fledged event
horizon from which light can never escape, the black
hole can have a state of everlasting collapse that could
last a very, very long time for large stars. Thus no event
horizon means that nothing is cut off from the rest of
the universe. Hence there is no information paradox.
Time – independent gravitational fields (i.e. stationary
space-times) play an important role in General
Relativity. A stationary gravitational field is one that
does not change in time. A stationary space-time
exhibits time translation symmetry. This is technically
called a time – like killing vector. Many of the
gravitational fields which are of high importance in
physical theories are, time – independent. The
Schwarzschild solutions (exterior and interior) and the
Kerr metric of a rotating black hole are common
examples of stationary space-times [3-5].
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Many researchers are working on stationary space-
times and they are trying to know the behavior of the
models of the universe and the nature of other physical
quantities in it.
Flores et. al. [6] have studied the Levi – Civita
connection in stationary space-times and applied the
results to Kerr space-time. Alias et. al. [7] have
developed integral formulae for space like hyper
surfaces in conformally stationary space-times and
discussed their applications. Bartolo et. al. [8] have
obtained existence and multiplicity results for
orthogonal trajectories on stationary space-times under
intrinsic assumptions, with some examples and
applications. Katz et. al. [9] has obtained expression for
gravitational energy in stationary space-times.
Herberthson [10] has discussed the bounds for and
calculation of the multiple moments of stationary
space-times. Chrusciel et. al. [11] have given solutions
of the vacuum Einstein equations with a negative
cosmological constant for infinite dimensional families
of non-singular stationary space-times. Nayak [12] has
investigated the relations between the inertial forces
and the Einstein equations in axially symmetric
stationary space-times. Shiromizu et. al. [13] have
shown that strictly stationary space-times cannot have
non-trivial configurations of form fields and complex
scalar fields. The cosmological models with different
physical parameters in stationary space-times have been
studied in our earlier work [14-16].
In this research note, we tried to study the pre-Hawking
radiation, gravitational collapse and stability of
spherically symmetric space-times in time –
independent gravitational fields. It is realized that there
is no pre - Hawking radiation, there is no stability of the
model and it will continue to collapse due to the
gravitational effects.

II.   THE METRIC AND THE FIELD
EQUATIONS

Consider the most general spherically symmetric space-
time

22222 dtedrdred  +Ω−−= … (1)

in which  and  are functions of r and t and obeys
the relation

)(tf=+ 
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0)( ≤tf all over to space, as it may be found by

Landau [17]. Selecting )(tf as )(2 t− , then we

write
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The Einstein’s field equations
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in stationary space-times takes the form
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is the three – dimensional metric tensor determining the

geometry of space, f is the three – dimensional

antisymmetric tensor given by
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P is the three - dimensional scalar curvature given by


 PP = …(10)

where P is the three - dimensional Ricci tensor

constructed from the three – dimensional metric tensor

 in the same way as ikR is constructed from the

ikg [17].

The differential equations (4 - 6) for the metric (1) are
given by
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(Here and hereafter dash (′) and ( ⋅ ) denotes the
derivative with respect to r and t respectively.)
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III.   THE STRESS - MOMENTUM TENSOR AND
THE FOUR - VELOCITY IN OUR MODEL

The stress - momentum tensor for a perfect fluid is
given as

puupgT i
j

ki
jk

i
j  −+= )( …(15)

where  and p are the proper energy density and the

proper pressure of the perfect fluid, related by the
equation of state

.10, ≤≤= p … (16)

The particles (or elements of mass) describe a purely
radial trajectory (inwards, or outwards) in our model, so
that the only non - vanishing components of four -

velocity iu are 1u and 4u . Denote =4u and the

magnitude of iu is given by
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from which, we write
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which yields
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(where the subindex p stands for “particles”). Here and
hereafter we have freely used the notations and symbols
of Ribas [18].
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p
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p
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We call  the proportion of infalling particles. Hence

−1 is the proportion of outgoing particles. The

mean “r - velocity” 1u is given as
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From the equation (15), we write the components of

stress - energy tensor i
jT as
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In the case of ultrarelativistic (the particles moving at
the speed very close to speed of light), 1>> , and

hence we delete the terms of  with higher powers in

denominator. Thus the above equations (21 - 24) re-
write as
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(Here and hereafter the symbol ≈ stands for
approximate value.)

IV.   PRE – HAWKING RADIATION,
GRAVITATIONAL COLLAPSE AND STABILITY

Vachaspati et. al. [2] has demonstrated that collapsing
stars emit pre - Hawking radiation, by considering the
fact that pre - Hawking radiation spectrum results to be
roughly proportional of Hawking radiation of black
holes. In view of this, Ribas [18] has deduced a model
for ultrarelativistic spherically symmetric pre-Hawking
radiating gravitational collapse. For this pre - Hawking
radiating gravitational collapse, we have

2r
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where k is a constant of proportionality and m denotes
the inner mass which is lost as radiation. We are
considering not only the global emission of the
collapsing star but also that of the inner layers towards
the outer ones. We consider the relationship between
the function  and the mass m:
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In stationary space-times, the gravitational potentials

ijg are independent of time t. Hence, for the metric (1)

in stationary space-time,  is a function of r alone.
Therefore from equations (31) and (32), we have
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yields
0=k … (34)

If 0=k then equation (31) yield,

0=m . Hence the mass m is constant with respect

to time i.e., there is no radiation. This shows that there
is no pre - Hawking radiation in case of stationary
space-time.
From equation (14) and (30), we have
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We split the left side of equation (35) into two terms as
(in order to make explicit the contribution of infalling
and outgoing fluxes):
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The particle – antiparticle pair is created near the star’s
horizon due to the vacuum energy. The particle is
sucked inside because of the strong gravitational pull of
the star and simultaneously the antiparticle created and
emitted away causes the pre - Hawking radiation. Since
the second term of equation (36) is the term containing
infalling matter and equation (33) contains the term of
pre - Hawking radiation, therefore we equate this two
terms:
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As 0=k , 0= , which means that the

proportion of infalling matter is zero. Hence in this
case, all the particle – antiparticle pairs generated near
the event horizon annihilate each other, which again
strongly suggested that there is no pre - Hawking
radiation in case of stationary space-times.

In the stability phase, 1<<−e ,  so that equation
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With this value, the equation (35) gives the stability
phase (st) as
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Using this stability phase value, equation (29) gives

01
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and then from equation (11), we write the stability

phase value of e as

1=ste OR 0=st …(43)

Using the stability phase value of st and ste  given

by equations (41) and (43) respectively, from equation

(38), we arrived at the stability phase value of −e as

0=− ste  OR ≈st infinity … (44)

Our stability value of ste  contradicts the situation of

stability that 1<<−e . Also st is infinity shows

minus infinity value of st (from equation (2)). Thus

our model of gravitational collapse does not reach the
stability phase in stationary space-time and it is not
stable. Also our model has no pre - Hawking radiation
and the model will continue to collapse due to the
gravitational effect.

V.   CONCLUSION

We studied the most general spherically symmetric
space-time, in time – independent gravitational fields in
related to the pre - Hawking radiation, gravitational
collapse and stability of the model. It is seen that in
stationary space-time, there is no pre - Hawking
radiation, means the model is free from pre - Hawking
radiation and the model will continue to collapse due to
the gravitational effect. The model is unstable and has
no stability phase in stationary space-times.
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